Evaluation and Design Plan of a RUS
Interface for DGAS

Rosario M. Piro

Istituto Nazionale di Fisica Nucleare (INFN) - Sezione di Torino
Via Pietro Giuria, 1 - 10125 Torino, Italy
Email: piro@to.infn.it

Version 0.2 (draft) - September 22, 2006

Abstract

OMII-Europe [1] is a EU-funded project for improving the interop-
erability of key Grid middleware components across heterogeneous Grid
platforms. Due to the importance of tracing resource usage by Grid users,
one of the OMII activities is specifically concerned with interoperability
between different Grid accounting systems through the implementation of
a common standard interface.

This document briefly describes the architecture and workflow of the
Distributed Grid Accounting System (DGAS) [2, 3] and evaluates the
possibility to extend it by a Resource Usage Service (RUS) [4, 5] interface
— according to the OGF! specification — that allows to store and retrieve
OGF Usage Records (URs) [6, 7] via Web Services. For this purpose
the functionalities provided by and accounting information stored in the
DGAS HLR (Home Location Register) service are confronted with the
OGF specifications of RUS and UR. Furthermore a preliminary design
plan for the DGAS-RUS is given.

Keywords: Distributed Grid Accounting, Resource Usage Service, Usage
Record.

1 Introduction

The purpose of this document is to evaluate the possibility of implementing
a Web Services-based Resource Usage Service (RUS) [4, 5] interface for the
Distributed Grid Accounting System (DGAS) [2, 3] and to present a preliminary
design plan. This task is part of the OMII-Europe project and aims at achieving
interoperability between different accounting systems through the adoption of
common standards. The OGF RUS is a Web Service for storing and retrieving

1The Global Grid Forum (GGF) has recently merged with the Enterprise Grid Alliance
(EGA) to form the Open Grid Forum (OGF).

accounting information in the OGF Usage Record (UR) format [6] (defining a
particular XML document containing job usage information).

This document is organized as follows: Section 2 gives a very brief and
generic introduction to DGAS, leaving out nearly all technical details, but al-
lowing to better understand the following discussion. The OGF RUS and OGF
UR are then evaluated in Section 3, with respect to DGAS functionalities and
accounting information content. A preliminary design plan for implementing
a DGAS-RUS is then presented in Section 4. Some final remarks are given in
Section 5.

2 The Distributed Grid Accounting System

The Distributed Grid Accounting System (DGAS), previously called DataGrid
Accounting System [2], is an accounting toolkit — originally developed within
the European DataGrid (EDG) and Enabling Grids for E-sciencE (EGEE)
projects —, conceived and designed to be completely Grid-oriented. It is based
on a fully distributed client/server infrastructure without having a central repos-
itory of accounting information, relying instead upon a network of independent
accounting servers used to keep the accounting records, as well as a network of
independent servers for resource pricing in order to enable the deployment of a
Grid resource market.?

The Home Location Register (HLR) service is the part of DGAS that is
responsible for keeping the accounting information for both Grid users and Grid
resources. It receives the accounting information, the so called usage records?,
from the Grid resources, and stores them for later retrieval. Usage information
can be obtained from the HLR service for single jobs as well as in aggregate
form (per user, per resource, per VO).

2.1 User HLRs and Resource HLRs

DGAS associates accounting information to previously registered user and re-
source accounts (identified by the User DN and the Grid CE ID respectively)
and foresees two logical types of HLR servers: the User HLR and the Resource
HLR* A User HLR stores information from a user’s or VO’s point of view
and is the DGAS server that users can query for accounting information con-
cerning themselves and the jobs they have submitted. A Resource HLR stores
information from a resource owner’s or site manager’s point of view and is the
DGAS server that resource owners, or site managers, can query for information
concerning their resources.

The reason of this division is straightforward. In order to guarantee a rea-
sonable scalability there will be many HLR servers on the Grid, and different

2The resource pricing servers, called Price Authorities are optional and of no further im-
portance for the aim of implementing the OGF RUS.

3In this case we talk about the DGAS UR format, not the one defined by OGF, see
Section 2.3.

4Each HLR server, however, can manage both user and resource accounts if required.

resources will be registered with different HLR servers. Hence it is advisable
that all accounting information concerning a given user be forwarded to the
HLR that manages the user’s account (“User” HLR) in order to be able to eas-
ily compute accounting statistics for the single Grid users although they submit
jobs to many different Grid resources. With a distributed accounting system
with duplicated usage records each Grid participant (user or resource owner)
ideally needs to query only a single HLR server in order to have an exhaustive
accounting view, nonetheless preserving a reasonable scalability that cannot be
achieved through a single centralized accounting repository. Note, however, that
the single sites have the faculty to decide whether accounting information should
be forwarded from their Resource HLR to the different User HLRs or not.

2.2 Accounting Workflow

For each job a usage record is sent® from the Computing Element to the Resource
HLR that manages its account. Along with the accounting information the CE
informs the Resource HLR server whether it has to transmit a duplicate of the
usage record to the User HLR that manages the accounts of the user’s VO or
not. Additionally, this step may include an “economic transaction”, by means
of exchanging virtual credits between user and resource account. For obvious
security and privacy reasons, all connections are authenticated and encrypted
with x509 host certificates. As can be seen in Fig. 1, the workflow is somehow
more complex (as most communication is done asynchronously), but further
details are omitted here.

2.3 DGAS Legacy Interface and User Queries

Each User and Resource HLR server can be queried by command line clients to
retrieve accounting information. For querying an HLR server the user has to
authenticate with a valid user certificate or proxy. Access to private information
is granted only to authorized users. That is, users can generally access only
information regarding their own jobs, while VO admins may have access to the
accounting information of the entire VO.

Since the development of DGAS started long before OGF recommendations,
like the RUS and the UR, emerged, the communication between DGAS com-
ponents (including clients and servers) uses a legacy protocol based on non-
standard XML documents that are exchanged — for security and privacy rea-
sons — via Globus GSI [8]. This DGAS-specific interface is wrapped by client
programs such that querying a DGAS HLR server, or pushing accounting infor-
mation onto it, can be accomplished by specifying the necessary parameters on
the command line.

5Usually by the DGAS metering sensors, but other sensors might be used as well.

Resource HLR node DB (usage records)

4) get UR

1
1
:
executing);

DB (transaction queue) 8) delete UR sito y:
7) insert UR '

1

1

1

3) insert UR Transaction Manager

HLR server daemon \
2) transmit UR? ---------------------------- '
/ 5) transmit UR

L]
'
. / : AN
Computing Element 1
User/VO HLR node
metering '
sensors E HLR server daemon
1) get usage :
job run info : 6) insert UR
'
:
L]
Farm ' DB (usage records)

Figure 1: DGAS accounting procedure.

3 Comparison of RUS and UR to DGAS

The OGF Resource Usage Service (RUS) specification [4] is based on the OGF
Usage Record (UR) format [6], in that it describes a service for storing and
retrieving UR documents.® Therefore, we evaluate both specifications distinc-
tively with respect to functionalities of DGAS and the accounting information
stored by it. Since the RUS is based on the UR the following Section first
discusses the latter, while the RUS itself will be discussed afterwards.

3.1 Comparison of the OGF UR and the DGAS Account-

ing Information Schema

The first version of the OGF UR specification is currently being finalized and a
second version is being planned. In this Section we refer to the draft of version
1. The following is a brief (incomplete) example UR according to the OGF

6 Actually, the RUS stores URs, but provides RUS-URs that wrap the original UR document
but add information about who has stored/modified the UR (and when).

format:

<?xml version="1.0" encoding="UTF-8"?7>
<JobUsageRecord xmlns="http://schemas.ggf.org/ur/2006/06/usage.xsd"
xmlns:urwg="http://schemas.ggf.org/ur/2006/06/usage.xsd"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance">
<urwg:RecordIdentity urwg:createTime="1994-11-05T13:15:30Z"
urwg:record1d="t2—hlr—01.to.infn.it:56568:_113"/)
<urwg:JobIdentity>
<urwg:GlobalJobId>https://1xb1404.cern.ch:9000/GIUnJA_DwAF jWnV2EE-pfw</urwg:GlobalJobId>
<urwg:LocalJobId>34221.t2—ce—01.to.infn.it</urwg:Loca1JobId>
</urwg:JobIdentity>
<urwg:UserIdentity>
<urwg:LocalUserId>dteam007</urwg:LocalUserId>
<ds:KeyInfo>
<ds:X509Data>
<X509SubjectName>/C=IT/0=INFN/0U=Personal Certificate/L=Torino/CN=Rosario Michael \
PIR0</X509SubjectName>
</ds:X509Data>
</ds:KeyInfo>
</urwg:UserIdentity>
<urwg: JobName>Hello World</urwg:JobName>
<urwg:Charge unit="grid credits">22</urwg:Charge>
<urwg:Status>done</urwg:Status>
<urwg:Memory storageUnit="KB" phaseUnit="S" metric="max">125</urwg:Memory>
<urwg:Swap storageUnit="KB" phaseUnit="S§" metric="max">145</urwg:Swap>
<urwg:WallDuration>PT25</urwg:WallDuration>
<urwg:CpuDuration usageType="user">PT15</urwg:CpuDuration>
<urwg:CpuDuration usageType="system">PT0S</urwg:CpuDuration>
<urwg:EndTime>1994-11-05T13:15:29Z</urwg:EndTime>
<urwg:StartTime>1994-11-05T13:15:27Z</urwg: StartTime>
<urwg:MachineName description="site name">INFN-TORINO</urwg:MachineName>
<urwg:Queue description="local LRMS queue">cert</urwg:Queue>
<urwg:ProjectName description="V0 name'">dteam</urwg:ProjectName>
<urwg:Host primary="true">wn42.to.infn.it</urwg:Host>
</JobUsageRecord>

Unfortunately, the OGF UR, although syntactically explicit, is semantically
unclear in many data fields. MachineName, for example, can be the host name,
cluster name, or site name [6]. ProjectName might be used as the name of the
User VO, but it may also have different meaning. Likewise, GlobalUsername
might be the User DN (subject of the user’s certificate) or not. Such a lack of
semantical definition may undermine standardization efforts because it is likely
that different accounting systems will require these ambiguous data fields to be
populated with different kinds of information.

Even worse, the OGF UR has no data field to specify the unique Grid ID
(e.g. “t2-ce-01.to.infn.it:2119/jobmanager-lcglsf-cert” for LCG) of a
Grid resource/Computing Element. An explicit data field ResourceIdentity
would be more appropriate in a Grid context (and DGAS requires it, see below).

Concerning the user’s identity a data field that can be used to specify the
user’s role when submitting a job should be added (e.g. for the purpose of
charging it might be different if a user is a VO admin or not). Most LHC
experiments that use LCG, for example, require the FQAN of the user’s VOMS
certificate [9] to be recorded.

Also, the OGF UR does not contain any information on resource (processor)
performance, that can be crucial when normalizing resource consumption values
across heterogeneous resources (one second of CPU time on a Commodore 64
is very different from one second of CPU time on a Pentium-III or even newer

OGF data field type num DGAS data field type num
RecordIdentity — 1

RecordIdentity#recordId xsd:token 1 — - —
RecordIdentity#createTime xsd:dateTime 0-1 urCreation(1) string 0-1
RecordIdentity|ds:KeyInfo ds:KeyInfo 0-1 — — —
— — A Transaction ID int 1(2)
— — — Transaction time timestamp 1(2)
Jobldentity — 0-1

Jobldentity| GlobalJobld xsd:string 0-1(3) dgJobld string 1(4)
Jobldentity|LocalJobId xsd:string 0-1(3) IrmsId string 1
Jobldentity|ProcessId xsd:string 0+ — — y—
UserlIdentity — 0+

Userldentity|LocalUserId xsd:string 0-1 localUserld string 0-1
Userldentity| GlobalUsername xsd:string 0-1 —X — —
UserlIdentity|ds:KeylInfo ds:KeylInfo 0-1 User DN(1) string 1(4)
— — — group (local,user) string 0-1
— — — Resource/CE ID string 1(4)
JobName xsd:string 0-1 jobName string 1
JobName#description xsd:string 0-1 — —
Charge xsd:float 0-1 amount(1) int 1(2,5)
Charge#tdescription xsd:string 0-1 — — —
Charge#tunit xsd:token 0-1 (always credits) — —
Charge#formula xsd:string 0-1 —4 — —
Status xsd:token 1 — — —
Status#description xsd:string 0-1 — — —
— — — exitStatus int 0-1
Disk* xsd:positiveInteger 0+* — — —
Disk#tdescription xsd:string 0-1 — — —
Disk#storageUnit xsd:token 0-1 — — —
Disk#phaseUnit xsd:duration 0-1 — — —
Disk#metric xsd:token 0-1 — — —
Disk#type xsd:token 0-1 — — —
Memory* xsd:positiveInteger 0+* pmem int 1
Memory#description xsd:string 0-1 — — —
Memory#storageUnit xsd:token 0-1 (always KB) — —
Memory#phaseUnit xsd:duration 0-1 — — —
Memory#metric xsd:token 0-1 (always max) — —
Memory#type xsd:token 0-1 — — —
Swap™* xsd:positiveInteger 0+* vmem int 1
Swap#description xsd:string 0-1 — — —
Swap#storageUnit xsd:token 0-1 (always KB) — —
Swap#phaseUnit xsd:duration 0-1 — — —
Swap#metric xsd:token 0-1 (always max) — —
Swap#type xsd:token 0-1 — — —

Table 1: Data fields of OGF URs and DGAS usage records. For the OGF UR,
child elements are represented by a pipe (e.g. “RecordIdentity|ds:KeyInfo”),
while attributes are represented by '#’ (e.g. “RecordIdentity#recordld”). “num”
indicates how often the data fields may or have to appear. OGF UR data fields
marked by an asterisk (*) can occur multiple times as long as they are differen-
tiated by their metric and/or type attributes. Legend: (1) This is a proposal
for mapping data fields, although the fields are semantically and/or syntacti-
cally not equivalent and may require conversion; (2) Determined automatically
(either by the DGAS metering sensors or the HLR server); (3) At least one of
both needs to be present; (4) These unique IDs are required for DGAS, but
may also be constructed if the global Grid IDs are not available; (5) If no eco-
nomic accounting is desired, the charge/cost is set to zero; (6) CpuDuration can
occur twice in a OGF UR, once for user CPU time and once for system CPU
time (specified as attribute type); (7) The SubmitHost is usually present in the
unique Grid ID generated by the User Interface; (8) Extension elements that
may be used for an arbitrary purpose, the attribute description is used for
semantical definition; (9) In case records are forwarded to the User HLR. Table
continues ...

OGF data field

type num DGAS data field type num
Network™ xsd:positivelnteger 0+* — — —
Network#description xsd:string 0-1 — — —
Network#storageUnit xsd:token 0-1 — — —
Network#phaseUnit xsd:duration 0-1 — — —
Network#metric xsd:token 0-1 — — —
TimeDuration™ xsd:duration 0+* — — —
TimeDuration#type xsd:token 0-1 — — —
Timelnstant® xsd:dateTime 0+* submitTime(1) timestamp 0-1
Timelnstant#type xsd:token 0-1 p— — —
ServiceLevel* xsd:token 0+* — — —
ServiceLevel#type xsd:token 0-1 — —
WallDuration xsd:duration 0-1 wallTime(1) int 1
‘WallDuration#description xsd:string 0-1 — — —
CpuDuration(6) xsd:duration 0-2(6) cpuTime(1) int 1
CpuDurationgtdescription xsd:string 0-1 — —
CpuDuration#usageType “user” /“system” 1(6) (always total) — —
NodeCount xsd:positivelnteger 0-1 — — —
NodeCount#description xsd:string 0-1 = — —
NodeCount#metric xsd:token 0-1 = — —
Processors xsd:positiveInteger 0-1 processors int 0-1
Processors#description xsd:string 0-1 — — —
Processors#metric xsd:token 0-1 (always max) — —
Processors#consumptionRate xsd:float 0-1 — — —
EndTime xsd:dateTime 0-1 end(1) timestamp 1
EndTime#description xsd:string 0-1 — —
StartTime xsd:dateTime 0-1 start(l) timestamp 1
StartTime#description xsd:string 0-1 — — —
MachineName domainNameType 0-1 ceHostName(1) string 0-1
MachineNameg#description xsd:string 0-1 — — —
— — — siteName string 0-1
SubmitHost domainNameType 0-1 — — —
SubmitHost#description xsd:string 0-1 — — —
Queue xsd:string 0-1 queuename string 0-1
Queuegdescription xsd:string 0-1 — — —
— — — ctime (as for PBS) timestamp 0-1
— — — qtime (as for PBS) timestamp 0-1
— — — etime (as for PBS) timestamp 0-1
ProjectName xsd:string 0+ — — —
ProjectNamegtdescription xsd:string 0-1 — — —
— — — User VO string 1(2)
— — — User FQAN string 0-1
Host domainNameType 0+ execHost (1) string
Host#description xsd:string 0-1 — — —
Host#primary xsd:boolean 0-1 — — —
ConsumableResource(8) xsd:float o+ — — —
ConsumableResourcesdescription xsd:string 0-1 — — —
ConsumableResource#units xsd:string 0-1 — — —
PhnseResource(s) xsd:float 0+ —_ — —
PhaseResource#description xsd:string 0-1 — — —
PhaseResource#units xsd:string 0-1 — — —
PhaseResource#phaseUnit xsd:duration 0-1 — — —
VolumeResource(8) xsd:float 0+ — — —
VolumeResource#description xsd:string 0-1 — — —
VolumeResource#units xsd:string 0-1 — — —
VolumeResource#storageUnit xsd:token 0-1 — — —
Resource xsd:string 0+ — —
Resource#description xsd:string 0-1 — — —
4 — — Remote HLR server string 0-1(9)
= — — SpecInt2000 int 0-1
A — — SpecFloat2000 int 0-1
— — — CE timezone string 0-1
— — accountingProcedure string 0-1
— — — atmClientVersion string 0-1
— — — economicAccounting boolean 0-1

Continuation of Table 1 (see there for the legend).

processor). Elements such as ProcessingPower, SpecInt2000 or similar would
be needed.

Another drawback of the OGF UR is the fact that it is very batch job specific
and needs to be extended (customized) for other resource types and more generic
services. With respect to storage resources, for example, the OGF UR as it is
now, would allow to specify disk usage (element Disk), but no identifier for files
(FileIdentity or something similar is missing).

Table 1 compares the data content of a OGF UR with that of a DGAS usage
record.

As can be seen, a mapping between OGF UR data fields and DGAS data
fields is to a good degree possible. Moreover, DGAS stores many additional
job information in a blob (MySQL) such that further information can be added
to the legacy data scheme (although some data fields that occur only once in
DGAS but can be present multiple times in the OGF URT). Fields that are
present on a DGAS HLR, but not foreseen by the OGF UR format, can be
added as extensions to the latter (using ConsumableResource, PhaseResource,
VolumeResource or Resource), having however the disadvantage to undermine
standardization efforts. We therefore believe that while initially implement-
ing these fields as extensions to the OGF UR, we should propose the addi-
tion to the official OGF UR of at least the most important fields, such as
Resourceldentity, UserV0, UserFQAN (and we have already proposed some
of them to the UR-WG).

DGAS has more mandatory data fields than the OGF UR, this however is
not a problem, since the RUS specification allows to define further mandatory
fields. There is however one important exception: the RUS allows to specify
as mandatory only data fields that are regularly part of the UR specification,
i.e. data included through the extension framework (Resource elements, etc.)
cannot be declared mandatory.

The DGAS HLR, however, requires the non-UR data field CE ID (or Grid
resource ID) to be specified, since this ID defines to which resource account a
usage record has to be associated. Likewise, DGAS user accounts are identified
by the User DN (subject of the user’s x509 certificate), but the corresponding
element node in the OGF UR specification®

UserIdentity|ds:KeyInfo|ds:X509Data|X509SubjectName

(where the pipe indicates a parent-child relationship) cannot be declared manda-
tory for the RUS (although the ancestor node UserIdentity can).

Also, the UR field Status (not equivalent to the DGAS exitStatus!) is
a mandatory field that is usually not provided in DGAS. However, when URs

"The CpuDuration, for example, may be (not necessarily) split into user and system CPU
usage in the OGF UR, while DGAS treats only the total value. Nonetheless a conversion from
DGAS to OGF records and vice versa should be straight forward.

8Note that DGAS uses a slightly different format of the User DN. While the specification
of ds:KeyInfo requires the DN fields to be separated by commas [10], DGAS uses the openssl
version with slashes as field separators.

received through the DGAS legacy interface are converted to OGF UR doc-
uments, the Status might be derived as “completed” (for exitStatus=0) or
“unknown” (for any other exit code).?

3.2 Comparison of the OGF RUS Functionalities and the
DGAS HLR Service

The following is a comparison between functionalities foreseen by the RUS spec-
ification and functionalities implemented in the DGAS HLR service. The dis-
cussion is based on the August 2006 draft of the RUS specification [4].

It has to be noted that the RUS wraps stored URs in a RUSUsageRecord
(RUS-UR) that contains additional information on who has stored/modified a
UR (and when). Additionally the RUS-UR contains a RUSRecordId element
that uniquely identifies the UR within that specific RUS. This element would
be equivalent to the DGAS HLR transaction ID (tid), listed in Table 1, but it
might be difficult to match (see the discussion of RUS: : insertUsageRecords).

Furthermore, the RUS allows to specify further mandatory UR elements
(beyond those specified as mandatory by the OGF UR, see Section 3.1) and
provides a method for retrieving the list of mandatory elements. Only specific
UR elements, however, can be declared to be mandatory. Extensions to the UR
cannot be made mandatory.

Most RUS SOAP methods return an OperationResult element that reports
the overall success/failure of the operation, and/or a RUSRecordIdList element
with a detailed report for an operation on (possibly) multiple URs.

The following lists the RUS SOAP methods and describes similarities and
differences with respect to the DGAS HLR service:

e RUS::insertUsageRecords:

— 4nput: list of UR elements
— output: OperationResult, RUSRecordIdList.

The legacy interface of the DGAS HLR allows to insert only one record per
call of the respective client (atmClient). This, however, should be quite
straight forward to implement for the RUS interface, since it won’t rely
on the legacy interface. A more severe problem is the fact that the RUS
specification requires the RUSRecordIds of the inserted URs to be reported
back, since DGAS usually inserts incoming records into a temporary trans-
action queue before asynchronously processing them (and attributing the
transaction ID, or tid, that would be equivalent to the RUSRecordId).
Eventually a mapping between tids and RUSRecordIds will have to be
established.

e RUS::extractRUSUsageRecords:

9Please note, that “unknown” is not a an official value of Status according to the UR
specification, but the specification foresees non-standard values to be supported.

— input: xPathQuery (XPath expression)

— output: OperationResult, list of RUS-URs
The DGAS HLR service provides a remote query client for the legacy
interface, that allows to extract single or multiple records in a quite flexible
way. It however works on completely different principles. A server engine
that can handle XPath expressions will be needed (unless the handling is

mandated to a native XML database, but the current implementation of
DGAS relies on a relational database; see the discussion in Section 4.1).

e RUS: :extractRUSRecordIds:

— input: xPathQuery (XPath expression)
— output: OperationResult, RUSRecordIdList

See the comment to RUS: : extractRUSUsageRecords.
e RUS::extractSpecifiedRUSUsageRecords:
— input: RUSRecordIdList
— output: OperationResult, list of RUS-URs

The extraction of records according to their ID is consistent with the
current DGAS query framework and can be easily integrated (although
the current implementation does not provide UR, XML documents).

e RUS::incrementUsageRecordPart:

— input: RUSRecordId, xPathQuery (for identification of the element
to be incremented), increment (xsd:long)

— output: OperationResult (refers only to the location of an accessible
record), modified (xsd:boolean)

The current implementation of DGAS does not foresee to modify or replace
a record after a job has been accounted. A new server engine has to be
developed for this purpose.

e RUS: :modifyUsageRecordPart:

— input: RUSRecordIld, XUpdate (XUpdate expression that identifies
an element and describes its modification)

— output: OperationResult (refers only to the location of an accessible
record), XUpdateResult (xsd:boolean)

See comment to RUS: : incrementUsageRecordPart.
e RUS: :replaceUsageRecords:

— 4nput: list of ReplacementRecord elements (each one composed of a
RUSRecordld and a UR)

10

— output: OperationResult, RUSRecordIdList
See comment to RUS: : incrementUsageRecordPart.
e RUS::deleteRecords:

— input: xPathQuery (XPath expression)
— output: OperationResult, RUSRecordIdList

See comment to RUS: : incrementUsageRecordPart.

e RUS::deleteSpecificRecords:

— input: RUSRecordIdList
— output: OperationResult, RUSRecordIdList

See comment to RUS: : incrementUsageRecordPart.
e RUS::listMandatoryUsageRecordElements:

— input: (none)

— output: OperationResult, MandatoryElements

Only regular UR elements (see Table 1) can be declared as mandatory
according to the RUS specification. Extensions (ConsumableResource,
PhaseResource, VolumeResource and Resource) cannot be declared manda-
tory. DGAS, however, requires non-UR elements as mandatory, namely
the User DN and the resource Grid ID (CE ID), see Section 3.1. These
data fields identify the HLR user and resource account to which a usage
record has to be associated.

Unfortunately, the current RUS specification is limited to the extraction or
retrieval of complete RUS-URs, hence strongly focusing on a storage service and
less on an information service. It is for example not possible to retrieve statis-
tical/aggregated information, while many users (Grid users as well as system
administrators) will rarely need the detailed per-job information and will of-
ten want only aggregated numbers for specific time periods (e.g. total resource
consumption of a VO during the last month, or of a specific user on a specific
resource within the last year, ...). The legacy interface of DGAS allows to
query the HLR server for such aggregated information in a flexible way.

Additional SOAP methods for this purpose would be appreciable (we propose
to define the methods aggregateRUSUsageRecords, aggregateRUSRecordIds
and aggregateSpecifiedRUSUsageRecords). Otherwise all aggregation has to
be done by the client that queries the RUS, which is suboptimal above all when
a large number of records is involved, since it significantly multiplies the amount
of information that has to be transmitted from the RUS to the client. However,
the OGF UR format is not clear on how to handle aggregated accounting in-
formation, leading to problems when implementing such methods for the RUS.

11

More standardization work within both the UR-WG and the RUS-WG will be
needed for this purpose.

Another difference of the RUS specification that has to be taken into account
is the limited number of error codes/fault messages that can be returned. The
DGAS HLR, in contrast to the plain RUS, for example associates usage records
to previously created user and/or resource accounts. In case a UR is submitted
to a User HLR (via the DGAS-RUS interface) that doesn’t manage the user’s
account, the HLR might respond with a RUS RUSInputFault which however
is less explicit than the DGAS error ENO_USER (’bankEngine: the account
doesn’t exists in the database’).

Other DGAS-specific features might be addressed by relying on the extension
framework of the UR. The instruction to the Resource HLR to forward an
inserted usage record to the User HLR, for example, might be implemented
as a Resource element in the UR itself. If the default is “false” then URs
without this extension will still be fully supported. For the (optional) economic
transaction, or account balancing, that can be done with DGAS, the OGF UR'’s
Charge element will be sufficient.

Still an open issue is, whether URs received by the Resource HLR through
the DGAS-RUS interface will have to be forwarded to the User HLR also trough
the DGAS-RUS interface or whether the (probably) more performant legacy
interface can be used.

Also, DGAS will be required to integrate information on who (and when)
stored /modified a usage record into its legacy data scheme (at least for storage
since modification is not foreseen so far). This information will have to be
contained in a returned RUS-UR (additionally to the UR itself). For old usage
records on DGAS HLR servers, it should however be possible to build such
information by taking the remote Resource HLR’s contact string (for records
that arrived from a Resource HLR to a User HLR) or the CE ID (for records
that arrived from a CE to a Resource HLR).

4 Preliminary Design Plan for the DGAS-RUS

In this Section the previously described similarities and differences between the
DGAS HLR service and the RUS specification are evaluated and a preliminary
design plan and architecture for a DGAS-RUS is presented.

4.1 Storage of XML documents

The main difficulty in implementing a DGAS-RUS is that the RUS interface
handles XML documents while DGAS stores records in a relational database
(MySQL).

XML documents can be stored in fundamentally different ways: in flat files
(that are not considered here), native XML database systems or mapped to
relational databases tables (see for example [11, 12, 13, 14]).

12

Although it cannot be the purpose of this document to evaluate all advan-
tages and disadvantages of native XML databases and relational databases, it
is necessary to discuss at least the most important ones, since they have a
significant impact on the implementation of the DGAS-RUS.

4.1.1 Native XML Databases

The most important advantage of native XML databases is the native support-
ing of XML query languages such as XPath [15], XQuery [16] and XUpdate [17].
The major disadvantage is the generally lower performance compared to rela-
tional databases (see for example [13]), research on more performant indexing
techniques for XML documents in native XML databases is still going on.

Using a native XML database for the DGAS-RUS would require to contin-
uously synchronize the content of two databases in two different database sys-
tems, since for reasons of backward compatibility (and performance) the legacy
interface and legacy relational database of DGAS cannot be simply abandoned.
Nonetheless records stored through the RUS interface should of course be avail-
able through the legacy interface and vice versa. The synchronization might be
achieved in basically two different ways: a) through a contemporary insertion
of new record into both databases, independent on the interface through which
they are submitted to the HLR (this however would add an additional over-
head to the insertion); or preferably b) through a frequent synchronization by a
dedicated process running on the HLR (this would also allow to automatically
convert old usage records when the DGAS-RUS is installed on an HLR). Using
a synchronizer would also allow to leave the previous DGAS code unchanged
and thus to render the DGAS-RUS an optional module without requiring its
installation in order for DGAS to work correctly, see Fig. 2.

Since the DGAS HLR server is written in C++, a native XML database
should provide a C++ API in order to qualify for the implementation of the
DGAS-RUS (for accessing the legacy relational database without needing to
re-implement already existing DGAS code in another programming language).

More important, however, is that a native XML database provides the crit-
ical key features necessary for a deployment in production environments, such
as concurrency, transactions and safety.!® For most relational database systems
these are standard features, but many native XML database systems have been
developed from scratch by small research groups.

Two other issues that have to be considered when choosing a database sys-
tem, are the license, that is the legal terms, under which it can be used, and
the continuing support, maintenance and development.

The most promising native XML database systems seem to be Natix [18],
that however has a restrictive license for non-commercial use only that does not
allow to distribute derivate products (and thus cannot be used for a DGAS-
RUS), and eXist [19], an open source project (GNU LGPL). Unfortunately,

10The DGAS HLR, for example, uses multiple threads to allow contemporary connections
from multiple remote clients, including accounting requests. Thus a database needs to be able
to handle multiple contemporary insertions and queries without problems.

13

eXist provides only a Java APIL It does however provide network interfaces
(XMLRPC, SOAP or REST over plain HTTP) that might be used from C++
code as well. This, however, would most probably further lower the performance
of the DGAS-RUS.

4.1.2 XML documents in Relational Databases

A mapping of XML elements to relational tables (in the remainder of the docu-
ment called “XML2RDBS”) can be either schema-based (using knowledge about
the document format — if a document specification is available as in the case
of the OGF UR — for example by “inlining” child nodes, that occur at most
once, as columns in the tables of parent nodes [12]) or schema-less (or schema-
oblivious; a generic mapping of the XML structure to a relational database,
with parent and child nodes and associations between them) [11]. The schema-
based approach exploits knowledge about the document structure and can help
in minimizing the number of join operations necessary for queries (due to the
excessive fragmentation/“shredding” of the XML document in the relational
model [11]), while the schema-less approach is generally less performant, but
allows to store arbitrary XML documents (see [14] for a comparison of different
schema-less approaches).

The most important disadvantage of XML2RDBS is the lack of support
of XPath, XQuery and XUpdate. Most research has been done on how to
translate such queries to SQL for the schema-less mapping, but the schema-
based mapping usually requires ad-hoc design and implementations of XML-to-
SQL query translation engines.!! The main problem when translating complex
XPath or XUpdate expressions to SQL is the optimization of the queries, since
a straight forward translation often leads to poor performance [12]. So far no
complete algorithm that considers all XML query cases seems to have been
developed (see [20] for a comparison of different XML-to-SQL query translation
approaches).

Another disadvantage is the fact that a schema-based approach, although
minimizing the necessary join operation, is less flexible and causes difficulties
when document schemes change significantly (as might be the case with version
2 of the OGF UR).

Last but not least, XML documents have to be parsed when being shredded
in order to fit into a relational schema. Also, they have to be reconstructed!2
before they can be returned to a RUS client. Both are costly operations and
might add a significant amount of overhead, above all when considering that
the current RUS specification foresees to always return complete documents.

Even when using a relation model for storing OGF URs for the DGAS-RUS
the data content in the legacy database tables and the new tables for the OGF

Tn our case only for XPath and XUpdate. XQuery, a complex XML query language that
uses XPath expressions, is currently not required for the OGF RUS. But it cannot be excluded
that it will be supported in future versions.

121n the correct order. This requires an appropriate order encoding model since the order
of XML documents has to be stored as additional data values within the relational schema
that keeps the data contents of the XML documents.

14

UR has to be synchronized (see Section 4.1.1 on a brief discussion), but this
synchronization would be more straight forward since it does not involve two
completely different database systems and the code already developed for the
legacy data model could be partly utilized for the new OGF UR storage model.

Nonetheless, taking into account these considerations, using a native XML
database for the DGAS-RUS seems to be the more appropriate decision, keeping
however in mind that the synchronization of the two databases (relational and
XML) is a non trivial task.

4.2 Design of the DGAS-RUS as Optional HLR Module

The basic idea for the DGAS-RUS is to implement it as an optional module for
DGAS, as show in Fig. 2, such that the core system can work without the RUS
interface being installed. In closed environments, the DGAS core system would
be sufficient, while open systems that require interoperability can additionally
install the standard RUS interface.

DGAS HLR server node :DGAS-RUS module

DB (legacy usage records)

DB (GGF UR)

synchronizer

| RUS interface
l‘

legacy HLR interface |
AN

Computing Element
User (metering sensors)

Figure 2: DGAS-RUS as an additional module to the core DGAS HLR.

This approach would allow both users (for information retrieval) and me-
tering sensors (for information storage) to use either the more optimized and
performant legacy interface to the DGAS HLR or the more standardized RUS
interface, whatever is more appropriate.

15

This generic design is independent from the implementation issues discussed
in the previous Sections and applies to both an underlying native XML database
system or a relational model for storing OGF UR documents.

4.3 Possible Implementation of the DGAS-RUS

We have opted for using a native XML database for the DGAS-RUS (tending
towards eXist), since we believe that the effort of designing, implementing and
maintaining an XML-to-SQL query translator, that is required if using a custom
schema-based relational model for UR storage, has many disadvantages and may
require more manpower than available. The design and implementation of a
daemon that keeps the legacy HLR database and the new DGAS-RUS database
synchronized is preferable, since it would be necessary as well (though in a more
straight forward way) for aligning the legacy database tables with new relational
tables for the OGF UR.

For the implementation of the RUS interface itself, we plan to rely on
gSOAP [21], a toolkit for the implementation of Web Services in C++.

Implementation details, such as the data storage model, are however still
object of research and experimentation, as long as the general design of the
DGAS-RUS remains the one described in Section 4.2.

5 Conclusions

The main purpose of this document was to present a preliminary design plan for
a DGAS-RUS interface. For reasons of backward compatibility, the DGAS-RUS
will be an optional module for the HLR service.

We furthermore discussed similarities and difference between the DGAS HLR
service on one side and the OGF RUS and UR specifications on the other side.

We finally described some possible implementations, although implementa-
tion details may still be subject to changes throughout the work on the DGAS-
RUS.

References

[1] OMII-Europe project website. http://www.omii-europe.org

[2] Rosario M. Piro, Andrea Guarise, and Albert Werbrouck. “An Economy-
based Accounting Infrastructure for the DataGrid”. Proceedings of the 4th
International Workshop on Grid Computing (GRID2003), held in conjunc-
tion with SuperComputing 2003, Phoenix, Arizona, November 17, 2003.

[3] Distributed Grid Accounting System website. http://www.to.infn.it/
grid/accounting/

16

[4] J. Ainsworth, S. Newhouse, and J. MacLaren. Resource Usage Service (RUS)
based on WS-I Basic Profile 1.0. Draft specification: draft-ggf-wsi-rus-17,
August 2006.

[5] GGF Resource Usage Service Working Group website. http://www.doc.ic.
ac.uk/"sjnb/GGF/rus-wg.html

[6] R-Mach et al. L. McGinnis (ed.). Usage Record — Format Recommendation.
Version 1. Draft specification, August 2006.

[7] GGF Usage Record Working Group website. http://www.psc.edu/"1fm/
PSC/Grid/UR-WG/

[8] I. Foster et al. “A Security Architecture for Computational Grids”. Proc. 5th
ACM Conference on Computer and Communications Security Conference,
pp. 83-92, 1998.

[9] V. Ciaschini. “A VOMS Attribute Certificate Profile for Authorization”.
April, 2004. Available at: grid-auth.infn.it/docs/AC-RFC.pdf

[10] XML-Signature Syntax and Processing. http://www.w3.org/TR/
xmldsig-core/

[11] JH. Gerritsen. “Native XML databases”. 5th Twente Student Conference
on IT, Enschede, Netherlands, June 26th, 2006.

[12] I. Tatarinov et al. “Storing and Querying Ordered XML Using a Relational
Database System”. ACM SIGMOD’2002, Madison, Wisconsin, USA, June
4th-6th, 2002.

[13] F. Weigel, K.U. Schulz, and H. Meuss. “Exploiting Native XML Index-
ing Techniques for XML Retrieval in Relational Database Systems”. ACM
WIDM’05, Bremen, Germany, November 5th, 2005.

[14] M. Emandi et al. “Approaches and Schemes for Storing DTD-Independent
XML Data in Relational Databases”. Transactions on Engineering, Com-
puting and Technology 13:168-173, 2006.

[15] XML Path Language (XPath) 2.0. http://www.w3.org/TR/xpath20/
[16] XML Query Language (XQuery) 1.0. http://www.w3.org/TR/xquery/
[17] XML Update Language. http://xmldb-org.sourceforge.net/xupdate/
[18] Natix website. http://pi3.informatik.uni-mannheim.de/natix.html.

en

[19] eXist website. http://exist.sourceforge.net/

17

[20] R. Krishnamurthy, R. Kaushik, and J.F. Naughton. “XML-to-SQL Query
Translation Literature: The State of the Art and Open Problems”. 1st
International XML Database Symposium (XSym 2003), Berlin, Germany,
September 8th, 2003.

[21] gSOAP website. http://www.cs.fsu.edu/ engelen/soap.html

18

